
MALLA REDDY ENGINEERING COLLEGE
(Autonomous)

Maisammaguda, Dhulapally (post & viaKompally), Secunderabad-500100.

Department of Computer Science & Information Technology

 OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB

 SUBJECT CODE: C0511

 B.Tech -III Semester (MR23)

ACADEMIC YEAR: 2024-2025

Department of Computer Science & Information Technology

INSTITUTION VISION

 To be a premier center of professional education and research, offering quality programs in a socio-

economic and ethical ambience.

INSTITUTION MISSION

 To impart knowledge of advanced technologies using state-of-the-art infrastructural facilities.

 To inculcate innovation and best practices in education, training and research.

 To meet changing socio-economic needs in an ethical ambience.

Malla Reddy Engineering College
(UGC Autonomous Institution, Approved by AICTE, New Delhi & Affiliated to JNTUH,

Hyderabad and Accredited 3rd cycle by NAAC with ‘A++’ Grade)

Maisammaguda(H),Medchal-MalkajgiriDistrict,Secunderabad,TelanganaState– 500100,

www.mrec.ac.in

http://www.mrec.ac.in/

 Department of Computer Science & Information Technology

DEPARTMENT VISION

 To Attain Global Standards in the Teaching, Training, and Research of the IT Industry that Strike a

Balance between the Rising Needs of the Sector and the Socio-Economic and Ethical Needs of the

Society.

DEPARTMENT MISSION

 M1: To Impart Quality Education and Research to the Students in Information Technology.

M2: To Train the Students in Advanced Technologies using State-of-the-Art Facilities.

 M3: To Build the Knowledge, Skills and Aptitude to Succeed in the Information Technology

 Industry through Ethical Values and Social Relevance.

.

Malla Reddy Engineering College
(UGC Autonomous Institution, Approved by AICTE, New Delhi & Affiliated to JNTUH,

Hyderabad and Accredited 3rd cycle by NAAC with ‘A++’ Grade)

Maisammaguda(H),Medchal-MalkajgiriDistrict,Secunderabad,TelanganaState– 500100,

www.mrec.ac.in

http://www.mrec.ac.in/

 Department of Computer Science & Information Technology

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To outshine in professional career with sound problem solving ability for providing IT solutions

 by proper plan, analysis, design, implementation and validation.

PEO2: To pursue training, advance study and research using scientific, technical and communication

 base to cope with the evolution in the technology.

PEO3: To utilize the acquired technical skills and knowledge for the benefit of society

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1: Identify the mathematical abstractions and algorithm design techniques together with

 emerging Software Tools to solve complexities indulged in efficient programming.

PSO2: Apply the core concepts of current technologies in the hardware, software domains

 in accomplishing IT enabled services to meet out societal needs.

PSO3: Practice modern computing techniques by continual learning process with ethical concerns in

 establishing innovative career path.

Malla Reddy Engineering College
(UGC Autonomous Institution, Approved by AICTE, New Delhi & Affiliated to JNTUH,

Hyderabad and Accredited 3rd cycle by NAAC with ‘A++’ Grade)

Maisammaguda(H),Medchal-MalkajgiriDistrict,Secunderabad,TelanganaState– 500100,

www.mrec.ac.in

http://www.mrec.ac.in/

Malla Reddy Engineering College
(UGC Autonomous Institution, Approved by AICTE, New Delhi & Affiliated to JNTUH,

Hyderabad and Accredited 3rd cycle by NAAC with ‘A++’ Grade)

Maisammaguda(H),Medchal-MalkajgiriDistrict,Secunderabad,TelanganaState– 500100,

www.mrec.ac.in

 Department of Computer Science & Information Technology

PROGRAMME OUTCOMES (POs)

PO 1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering

Fundamentals and an engineering specialization to the solution of complex engineering

problems.

PO 2

Problem analysis: Identify, formulate, review research literature and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

PO 3

Design/development of solutions: Design solutions for complex
engineering problems and design system components or processes that meet the
specified needs with appropriate consideration for the public health and safety, and the
cultural, societal, and environmental considerations.

PO 4

Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO 5

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

Engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO 6

The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO 7

Environment and sustainability: Understand the impact of the
professional engineering solutions in societal and environmental contexts, and demonstrate
the knowledge of, and need for sustainable development.

PO 8
Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

PO 9
Individual and team work: Function effectively as an individual and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO 10

Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to comprehend
and write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

http://www.mrec.ac.in/

PO 11

Project management and finance: Demonstrate knowledge and understanding of the

Engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

PO 12
Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

 Department of Computer Science & Information Technology

Bloom’s Taxonomy Triangle

Malla Reddy Engineering College
(UGC Autonomous Institution, Approved by AICTE, New Delhi & Affiliated to JNTUH,

Hyderabad and Accredited 3rd cycle by NAAC with ‘A++’ Grade)

Maisammaguda(H),Medchal-MalkajgiriDistrict,Secunderabad,TelanganaState– 500100,

www.mrec.ac.in

http://www.mrec.ac.in/

2024-25

Onwards

(MR23)

Malla Reddy Engineering College
(Autonomous)

B.Tech.

III Semester

Code:

B0511
Object Oriented Programming through Java Lab
(Common for CSE, IT, CSIT, CSE(DS), CSE(AIML), CSE(CS), and

CSE (IOT))

L T P

Credits: 1.5 - - 3

Prerequisites: NIL

Course Objectives:

This course will make students able to learn and understand the concepts and features of object- oriented

programming and the object-oriented concept like inheritance and will know how to make use of

interfaces and package, to acquire the knowledge in Java’s exception handling mechanism,

multithreading, to explore concepts of Applets and event handling mechanism. This course makes

students to gain the knowledge in programming using Layout Manager and swings.

 Software Requirements: Java
List of Programs

1. Write Java Programs that implement the following.

a) Constructor

b) Parameterized constructor

c) Method Overloading

d) Constructor overloading

2. Write a Java program

a) checks whether a given string is a palindrome or not.

b) for sorting a given list of names in ascending order.

c) that reads a line if integers and then displays each integer and the sum of all integers(use string

tokenizer class of java.util).

3. Write Java programs that uses the following keywords…

a) this

b) super

c) static

d) final

4. Write a Java program to implement

a) Method Overriding.

b) dynamic method dispatch.

c) multiple inheritance.

d) access specifiers.

5. Write a Java program that
a) reads a file name from the user, and then displays information about whether the file exists,

whether the file is readable, whether the file is writable, the type of file and the length of the

file in bytes.

b) reads a file and displays the file on the screen, with a line number before each line.

c) displays the number of characters, lines and words in a test file.

6. Write a Java program for handling

a) Checked exceptions.

b) unchecked exceptions.

7. Write a Java program

a) Creates three threads. First threads displays “Good Morning “for every one second, the second

thread displays “Hello” for every two seconds, the third thread Displays “Welcome” for every three
seconds.

b) that correctly implements producer consumer problem using concept of inter thread

communication.

8. Write a Java program which demonstrates the use of following collection classes

a) Array List

b) Hash Set

c) Deque

9. Write a Java program that works as a simple calculator. Use a grid layout to arrange

buttons for the digits and for the +,-,*,/ operations. Add a text field to displaythe result.

10. Write a Java program for handling

a) mouse events.

b) key events.
11. Write a Java program that creates a user interface to perform integer divisions. The user enters two

numbers in the text fields num1 and num2. The division of num1 and num2 is displayed in the

result field when the divide button is clicked. If num1 or num2 were not an integer, the program

would throw number format exception. If num2 were zero, the program would throw an arithmetic

exception and display the exception in the message dialogue box.

12. Write a Java program that
a) Simulates traffic light. The program lets the user select one of three lights: red, yellow or

green. When a radio button is selected, the light is turned on and only one light can be on at

a time. No light is on when the program starts.

b) Allows the user to draw lines rectangles and ovals.

 TEXT BOOKS:

1. Herbert Schildt, “Java The complete reference”, TMH, 8th edition, 2011.

2. T. Budd, “Understanding OOP with Java”, Pearson Education, updated edition, 1998.

 REFERENCES:

1. P.J. Deitel and H.M. Deitel, “Java for Programmers”, Pearson education.

2. P. Radha Krishna, “Object Oriented Programming through Java”, Universities Press.

3. Bruce Eckel,” Programming in Java”, Pearson Education.

4. S. Malhotra and S. Choudhary,” Programming in Java”, Oxford Univ. Press.

Course Outcomes:
At the end of the course, students will be able to

1. Build simple java programs using the basic concepts of OOP

2. Create user defined packages to build real time applications

3. Develop applications on files, exceptions, threads and applets.

4. Construct GUI based applications.

5. Design Interactive applications for use on internet.

CO- PO, PSO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs
Programme Outcomes (POs) PSOs

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO1 3 3 2 3 3 - - 3 3 2 - 3 2 2 2
CO2 3 3 3 2 3 - - 2 3 2 - 3 2 2 2
CO3 3 3 3 3 2 - - 2 2 1 - 2 3 2 2
CO4 3 3 2 2 2 - - 3 3 2 - 3 2 2 1
CO5 2 2 2 3 3 - - 2 1 2 - 2 2 2 2

Malla Reddy Engineering College
(An UGC Autonomous Institution), Approved by AICTE, New Delhi &

Affiliated to JNTUH, Hyderabad, Accredited by NAAC with ‘A++’ Grade (3rd

Cycle), Maisammaguda (H), Medchal-Malkajgiri, Secunderabad Telangana–

500100 www.mrec.ac.in

Department of AIML

1. Use Eclipse or Net bean platform and acquaint with the various menus. Create a test

project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try

code formatter and code refactoring like renaming variables, methods, and classes. Try

debug step by step with a small program of about 10 to 15 lines which contains at least

one if else condition and a for loop.

2. Write a Java program that works as a simple calculator. Use a grid layout to arrange

buttons for the digits and for the +, -,*, % operations. Add a text field to display the

result. Handle any possible exceptions like divided by zero.

3. a) Develop an applet in Java that displays a simple message.

b) Develop an applet in Java that receives an integer in one text field, and computes its

factorial Value and returns it in another text field, when the button named “Compute” is

clicked.

4. Write a Java program that creates a user interface to perform integer divisions. The user

enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num

2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2

were not an integer, the program would throw a Number Format Exception. If Num2

were Zero, the program would throw an Arithmetic Exception. Display the exception in a

message dialog box.

5. Write a Java program that implements a multi-thread application that has three threads.

First thread generates random integer every 1 second and if the value is even, second

thread computes the square of the number and prints. If the value is odd, the third thread

will print the value of cube of the number.

6. Write a Java program for the following: Create a doubly linked list of elements. Delete a

given element from the above list. Display the contents of the list after deletion.

7. Write a Java program that simulates a traffic light. The program lets the user select one of

three lights: red, yellow, or green with radio buttons. On selecting a button, an

appropriate message with “Stop” or “Ready” or “Go” should appear above the buttons in

selected color. Initially, there is no message shown.

8. Write a Java program to create an abstract class named Shape that contains two integers

and an empty method named print Area (). Provide three classes named Rectangle,

Triangle, and Circle such that each one of the classes extends the class Shape. Each one

of the classes contains only the method print Area () that prints the area of the given

shape.

9. Suppose that a table named Table.txt is stored in a text file. The first line in the file is the

header, and the remaining lines correspond to rows in the table. The elements are

separated by commas. Write a java program to display the table using Labels in Grid

Layout.

10. Write a Java program that handles all mouse events and shows the event name at the

center of the window when a mouse event is fired (Use Adapter classes).

11. Write a Java program that loads names and phone numbers from a text file where the data

is organized as one line per record and each field in a record are separated by a tab (\t). It

takes a name or phone number as input and prints the corresponding other value from the

hash table (hint: use hash tables).

12. Write a Java program that correctly implements the producer – consumer problem using

the concept of interthread communication.

13. Write a Java program to list all the files in a directory including the files present in all its

subdirectories.

14. Write a Java program that implements Quick sort algorithm for sorting a list of names in

ascending Order.

15. Write a Java program that implements Bubble sort algorithm for sorting in descending

order and also shows the number of interchanges occurred for the given set of integers.

www.btechsmartclass.com

Week 1.

Aim: Use Eclipse or Net bean platform and acquaint with the various menus. Create a test

project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try

code formatter and code refactoring like renaming variables, methods, and classes. Try

debug step by step with a small program of about 10 to 15 lines which contains at least one

if else condition and a for loop.

Solution:

 Step 1 - Install JDK in the computer.

 Step 2 - Set the path in the Environment Variables from Advanced Setting of computer

 Step 3 - Download Eclipse from Eclipse website

 Step 4 - Install the Eclipse (follow the screen to install eclipse)

http://www.btechsmartclass.com/

Select the sultable version based on your OS.

Then download get starts.

Double click on the Eclipse Application.

Click on Run in the Security Warning box.

Then, the installation process begins.

Click on Eclipse IDE for Java Developers.

Click on Install button.

Click on Accept Now.

Then the Eclipse installation begins.

Click on Accept

Click on Select All and Accept Selected.

After completing, click on Launch to start the Eclipse IDE. www.btechsmartclass.com

http://www.btechsmartclass.com/

CREATING PROJECT AND CLASSES IN ECLIPSE IDE

Browse the Workspace for storing the java project and click on Launch.

Select "Create a new Java project".

Type the project name and click on Finish.

Now, create the class in src directory from Package Explorer window.

Type the class name and click on Finish.

Type the java code.

Click on Play button to run or execute the java code.

Week 2:

Write a Java program that works as a simple calculator. Use a grid layout to arrange

buttons for the digits and for the +, -,*, % operations. Add a text field to display the

result. Handle any possible exceptions like divided by zero.

Source Code:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

* <applet code="Calculator" width=500 height=500></applet>

* */

public class Calculator extends Applet implements ActionListener

{

String msg=" ";

int v1,v2,result;

TextField t1;

Button b[]=new Button[10];

Button add,sub,mul,div,clear,mod,EQ;

char OP;

public void init()

{

Color k=new Color(10,89,90);

 setBackground(k);

t1=new TextField(50);

GridLayout gl=new GridLayout(6,3);

setLayout(gl);

for(int i=0;i<10;i++)

{

b[i]=new Button(""+i);

 }

add=new Button("+");

sub=new Button("-");

mul=new Button("*");

div=new Button("/");

mod=new Button("%");

clear=new Button("Clear");

EQ=new Button("=");

t1.addActionListener(this); add(t1);

for(int i=0;i<10;i++)

{

add(b[i]);

}

add(add);

add(sub);

add(mul);

add(div);

add(mod);

add(clear);

add(EQ);

for(int i=0;i<10;i++)

{

b[i].addActionListener(this);

}

add.addActionListener(this);

 sub.addActionListener(this);

mul.addActionListener(this);

div.addActionListener(this);

mod.addActionListener(this);

clear.addActionListener(this);

EQ.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

String str=ae.getActionCommand();

char ch=str.charAt(0);

if (Character.isDigit(ch))

t1.setText(t1.getText()+str);

else
if(str.equals("+"))

{

v1=Integer.parseInt(t1.getText()); OP='+';

t1.setText("");

}

else if(str.equals("-"))

{

v1=Integer.parseInt(t1.getText());

OP='-'; t1.setText("");

}

else if(str.equals("*"))

{

v1=Integer.parseInt(t1.getText()); OP='*';

t1.setText("");

}

else if(str.equals("/"))

{

v1=Integer.parseInt(t1.getText()); OP='/';

t1.setText("");

}

else if(str.equals("%"))

{

 v1=Integer.parseInt(t1.getText()); OP='%';

t1.setText("");

}

if(str.equals("="))

{

v2=Integer.parseInt(t1.getText());

if(OP=='+')

result=v1+v2;

else if(OP=='-')

result=v1-v2;

else if(OP=='*')

result=v1*v2;

else if(OP=='/')

result=v1/v2;

else if(OP=='%')

result=v1%v2;

t1.setText(""+result);

}

if(str.equals("Clear"))

{

t1.setText("");

}

}

}

Output:

Week 3:

1. Develop an applet in Java that displays a simple message.
2. Develop an applet in Java that receives an integer in one text field, and computes its

factorial Value and returns it in another text field, when the button named “Compute” is

clicked.

Source Code: Develop an applet in Java that displays a simple message\

// Import the packages to access the classes and methods in awt and applet classes.
import java.awt.*;
import java.applet.*;

/* <applet code="Applet1" width=200 height=300></applet>*/

public class AppletExample extends Applet
{
// Paint method to display the message.
public void paint(Graphics g)
{
g.drawString("Hello World!",20,20);
}

}

Output:

Source Code: Develop an applet in Java that receives an integer in one text field, and

computes its factorial Value and returns it in another text field, when the button named

“Compute” is clicked

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

/*<applet code="Fact.class" height=300 width=300></applet>*/

public class Factorial extends Applet implements

ActionListener{ Label l1,l2;

TextField t1,t2;

Button b1;

public void init(){

l1=new Label("Enter any integer value: "); add(l1);

t1=new TextField(5); add(t1);

b1=new Button("Calculate"); add(b1);

b1.addActionListener(this);

l2=new Label("Factorial of given integer number is "); add(l2);

t2=new TextField(10); add(t2);

}

public void actionPerformed(ActionEvent e){

if(e.getSource()==b1){

int fact=fact(Integer.parseInt(t1.getText()));

 t2.setText(String.valueOf(fact));

} }

int fact(int f){

int s=0; if(f==0)

return 1;

else

}

 }

return f*fact(f-1);

Output:

Week 4:

Write a Java program that creates a user interface to perform integer divisions. The

user enters two numbers in the text fields, Num1 and Num2. The division of Num1

and Num 2 is displayed in the Result field when the Divide button is clicked. If Num1

or Num2 were not an integer, the program would throw a Number Format Exception.

If Num2 were Zero, the program would throw an Arithmetic Exception. Display the

exception in a message dialog box.

Source Code:

import java.awt.*; import

java.awt.event.*; import

java.applet.*;

/*<applet code="DivisionExample"width=230 height=250></applet>*/

public class DivisionExample extends Applet implements ActionListener

{

String msg;

TextField num1, num2, res;

Label l1, l2, l3;
Button div;

public void init()

{

l1 = new Label("Dividend");

l2 = new Label("Divisor");

l3 = new Label("Result");

num1 = new TextField(10);

num2 = new TextField(10);

res = new TextField(10);

div = new Button("Click");

div.addActionListener(this); add(l1);

add(num1); add(l2);

add(num2); add(l3);
add(res);
add(div);

}

public void actionPerformed(ActionEvent ae)

{

 String arg = ae.getActionCommand();

int num1 = 0, num2 = 0;
if (arg.equals("Click")) {
if (this.num1.getText().isEmpty() | this.num2.getText().isEmpty())

{

msg = "Enter the valid numbers!";

repaint();
}
else
{
try

{

num1 = Integer.parseInt(this.num1.getText());

num2 = Integer.parseInt(this.num2.getText());

int num3 = num1 / num2;

res.setText(String.valueOf(num3));

msg = "Operation Succesfull!!!";

repaint();

}

catch (NumberFormatException ex)

{

System.out.println(ex);

res.setText("");

msg = "NumberFormatException-Non-numeric";

repaint();

}

 catch (ArithmeticException e)

{

System.out.println("Can't be divided by Zero" + e);

res.setText("");

msg = "Can't be divided by Zero";

 repaint();
}
}
}
}

public void paint(Graphics g)

{

g.drawString(msg, 30, 70);
}

}

Output:

 www.btechsmartclass.com

http://www.btechsmartclass.com/

Week 5:

Write a Java program that implements a multi-thread application that has three

threads. First thread generates random integer every 1 second and if the value is even,

second thread computes the square of the number and prints. If the value is odd, the

third thread will print the value of cube of the number.

Source Code:

import java.util.Random;

class RandomNumberThread extends Thread

 {

public void run()

{

Random random = new Random();

for (int i = 0; i < 10; i++)

{

int randomInteger = random.nextInt(100);

System.out.println("Random Integer generated : " + randomInteger);

 if((randomInteger%2) == 0)

{

SquareThread sThread = new SquareThread(randomInteger);

sThread.start();

}

else {

}

try {

}

CubeThread cThread = new CubeThread(randomInteger); cThread.start();

Thread.sleep(1000);

catch (InterruptedException ex) { System.out.println(ex);

}

}

}

}

class SquareThread extends Thread {

int number;

SquareThread(int randomNumbern) { number = randomNumbern;

}

public void run()

{

System.out.println("Square of " + number + " = " + (number * number));

}

}

class CubeThread extends Thread

{

int number;

CubeThread(int randomNumber)

{

number = randomNumber;

}

public void run()

{

System.out.println("Cube of " + number + " = " + number * number *number);

}

}

public class MultiThreadingTest

{

public static void main(String args[])

{

RandomNumberThread rnThread = new RandomNumberThread();

 rnThread.start();

}

}

Output:

Week 6: Write a C++ to illustrate the concepts of console I/O operations.

Source code:

public class DoubleLinkedList {

class Node {

int data; Node previous; Node next;

public Node(int data) {

this.data = data;

} }

Node head, tail = null;

public void addNode(int data) {

Node newNode = new Node(data);

if (head == null) {

head = tail = newNode; head.previous = null; tail.next = null;

} else {

tail.next = newNode; newNode.previous = tail; tail = newNode; tail.next = null;

}

}

public void display() { Node current = head; if (head == null) {

System.out.println("List is empty");

return;

}

System.out.println("Nodes of doubly linked list: ");

while (current != null) {

System.out.print(current.data + " "); current = current.next;

}

}

public static void main(String[] args) {

DoubleLinkedList dList = new DoubleLinkedList(); dList.addNode(1);

dList.addNode(2); dList.addNode(3); dList.addNode(4); dList.addNode(5);

dList.display();

}

}

Output:

Week 7:

Write a Java program that simulates a traffic light. The program lets the user select one

of three lights: red, yellow, or green with radio buttons. On selecting a button, an

appropriate message with “Stop” or “Ready” or “Go” should appear above the buttons

in selected color. Initially, there is no message shown.

Source Code:

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

/*

* <applet code = "TrafficLightsExample" width = 1000 height = 500>
* </applet>

* */

public class TrafficLightsExample extends Applet implements ItemListener

{

CheckboxGroup grp = new CheckboxGroup();

Checkbox redLight, yellowLight, greenLight; Label msg;

public void init(){

redLight = new Checkbox("Red", grp, false);

yellowLight = new Checkbox("Yellow", grp, false);

greenLight = new Checkbox("Green", grp, false); msg = new Label("");

redLight.addItemListener(this);

yellowLight.addItemListener(this);

greenLight.addItemListener(this);

add(redLight); add(yellowLight);

add(greenLight); add(msg);

msg.setFont(new Font("Serif", Font.BOLD, 20));

}

public void itemStateChanged(ItemEvent ie)

{

redLight.setForeground(Color.BLACK);

yellowLight.setForeground(Color.BLACK);

greenLight.setForeground(Color.BLACK);

if(redLight.getState() == true)

{

redLight.setForeground(Color.RED);

msg.setForeground(Color.RED);

msg.setText("STOP");

}

else if(yellowLight.getState() == true)

{

yellowLight.setForeground(Color.YELLOW);

msg.setForeground(Color.YELLOW);

msg.setText("READY");

}

Else

{

}

}

}

greenLight.setForeground(Color.GREEN);

msg.setForeground(Color.GREEN);

msg.setText("GO");

Output:

Week 8:

Write a Java program to create an abstract class named Shape that contains two

integers and an empty method named print Area (). Provide three classes named

Rectangle, Triangle, and Circle such that each one of the classes extends the class

Shape. Each one of the classes contains only the method print Area () that prints the

area of the given shape.

Source Code:

import java.util.*;

abstract class Shape
{
int length, breadth, radius;
Scanner input = new Scanner(System.in);

abstract void printArea();

}
class Rectangle extends Shape
 {
void printArea()
{
System.out.println("*** Finding the Area of Rectangle ***");

 System.out.print("Enter length and breadth: ");

length = input.nextInt(); breadth = input.nextInt();
System.out.println("The area of Rectangle is: " + length * breadth);
}
}

class Triangle extends Shape

 {
void printArea() {
System.out.println("\n*** Finding the Area of Triangle ***");

 System.out.print("Enter Base And Height: ");

length = input.nextInt(); breadth = input.nextInt();
System.out.println("The area of Triangle is: " + (length * breadth)/2);
}
}
class Cricle extends Shape
{
void printArea() {
System.out.println("\n*** Finding the Area of Cricle ***");

System.out.print("Enter Radius: ");

radius = input.nextInt();

System.out.println("The area of Cricle is: " + 3.14f * radius * radius);
}
}
public class AbstractClassExample
{
public static void main(String[] args)

{

 Rectangle rec = new Rectangle(); rec.printArea();

Triangle tri = new Triangle(); tri.printArea();

Cricle cri = new Cricle(); cri.printArea();

}

}

Output:

Week 9:

Suppose that a table named Table.txt is stored in a text file. The first line in the file is

the header, and the remaining lines correspond to rows in the table. The elements are

separated by commas. Write a java program to display the table using Labels in Grid

Layout.

Source Code:

import java.io.*;

 import java.util.*;

import java.awt.*;

import javax.swing.*;

class A extends JFrame {

public A() {

setSize(400, 400);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

GridLayout g = new GridLayout(0, 3); setLayout(g);

try

{

FileInputStream fin = new

FileInputStream("C:\\Users\\User\\eclipse-workspace\\LabManual\\src\\HashTab.txt");

Scanner sc = new Scanner(fin).useDelimiter(",");

String[] arrayList; String a;

while (sc.hasNextLine()) { a = sc.nextLine();

arrayList = a.split(",");

for (String i : arrayList) { add(new JLabel(i));

}

}

} catch (Exception ex) {

}

setDefaultLookAndFeelDecorated(true); pack();

setVisible(true);

}

}

public class TableTest

{

public static void main(String[] args) { A a = new A();

}

}

Output:

Week 10:

Write a Java program that handles all mouse events and shows the event name at the

center of the window when a mouse event is fired (Use Adapter classes).

Source Code:

import java.awt.*; import java.applet.*; import java.awt.event.*;

/*<applet code="MouseDemo" width=300 height=300>

</applet>*/

public class MouseDemo extends Applet implements MouseListener, MouseMotionListener

{

int mx = 0;

int my = 0; String msg = "";

public void init() {

addMouseListener(this); addMouseMotionListener(this);

}

public void mouseClicked(MouseEvent me) { mx = 20;

my = 40;

msg = "Mouse Clicked"; repaint();

}

public void mousePressed(MouseEvent me) { mx = 30;

my = 60;

msg = "Mouse Pressed"; repaint();

}

public void mouseReleased(MouseEvent me) { mx = 30;

my = 60;

msg = "Mouse Released"; repaint();

}

public void mouseEntered(MouseEvent me) { mx = 40;

my = 80;

msg = "Mouse Entered"; repaint();

}

public void mouseExited(MouseEvent me) { mx = 40;

my = 80;

msg = "Mouse Exited"; repaint();

}

public void mouseDragged(MouseEvent me) { mx = me.getX();

my = me.getY();

showStatus("Currently mouse dragged" + mx + " " + my);

repaint();

}

public void mouseMoved(MouseEvent me) { mx = me.getX();

my = me.getY();

showStatus("Currently mouse is at" + mx + " " + my); repaint();

}

public void paint(Graphics g) { g.drawString("Handling Mouse Events", 30, 20);

g.drawString(msg, 60, 40);

}

}

Output:

Week 11:

Write a java program that loads names and phone numbers from a text file where the

data is organized as one line per record and each field in a record are separated by a

tab (\t).it takes a name or phone number as input and prints the corresponding other

value from the hash table(hint: use hash tables)

Source Code:

import java.io.BufferedReader;

import java.io.File;

import java.io.FileNotFoundException;

import

java.io.FileReader;

import

java.io.IOException;

import

java.util.Hashtable;

import

java.util.Iterator;

import java.util.Set;

public class HashTab {

public static void main(String[] args) {

HashTab prog11 = new HashTab();

Hashtable<String, String> hashData = prog11.readFromFile("HashTab.txt");

System.out.println("File data into Hashtable:\n" + hashData);

prog11.printTheData(hashData, "raja");

prog11.printTheData(hashData, "123");

prog11.printTheData(hashData, " --- ");

}

private void printTheData(Hashtable<String, String> hashData, String input)

{

String output = null;

if (hashData != null) {

Set<String> keys = hashData.keySet();

if (keys.contains(input)) {

output = hashData.get(input);

} else {

Iterator<String> iterator = keys.iterator();

while (iterator.hasNext()) {

String key = iterator.next(); String value = hashData.get(key); if

(value.equals(input)) {

output = key;

break;

}

}

}

}

System.out.println("Input given:" + input);

if (output != null) {

System.out.println("Data found in HashTable:" + output);

} else {

System.out.println("Data not found in HashTable");

}

}

private Hashtable<String, String> readFromFile(String fileName) { Hashtable<String,

String> hashData = new Hashtable<String, String>(); try {

File f = new File("D:\\java\\" + fileName); BufferedReader br = new

BufferedReader(new FileReader(f)); String line = null;

while ((line = br.readLine()) != null) {

String[] details = line.split("\t"); hashData.put(details[0],

details[1]);

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

return hashData;

}

}

Output:

Week – 12

Write A Java Program That Correctly Implements The Producer–Consumer Problem

Using The Concept Of Interthread Communication.

Source Code:
class ItemQueue {

int item;

boolean valueSet = false;

synchronized int getItem()

{

while (!valueSet)

try {

wait();

} catch (InterruptedException e)

{

System.out.println("InterruptedException caught");

}

System.out.println("Consummed:" + item);

valueSet = false;

try

{

Thread.sleep(1000);

}

catch (InterruptedException e)

{

System.out.println("InterruptedException caught");

}

notify();

return item;

}

synchronized void putItem(int item)

{

while (valueSet)

try {

wait();

} catch (InterruptedException e)

{

System.out.println("InterruptedException caught");

}

this.item = item;

valueSet = true;

System.out.println("Produced: " + item);

try {

Thread.sleep(1000);

} catch (InterruptedException e)

{

System.out.println("InterruptedException caught");

}

notify();

}

}

class Producer implements Runnable

{

 ItemQueue itemQueue;

Producer(ItemQueue itemQueue){

this.itemQueue = itemQueue;

new Thread(this, "Producer").start();

}

public void run() {

int i = 0;

while(true) {

itemQueue.putItem(i++);

}

}

}

class Consumer implements Runnable{

ItemQueue itemQueue;

Consumer(ItemQueue itemQueue){

this.itemQueue = itemQueue;

new Thread(this, "Consumer").start();

}

public void run() {

while(true) {

itemQueue.getItem();

}

}

}

class ProducerConsumer{

public static void main(String args[])

{ ItemQueue itemQueue = new ItemQueue();

new Producer(itemQueue);

new Consumer(itemQueue);

}

}

Output:

Week – 13

Write a Java program to list all the files in a directory including the files present in all

its subdirectories.

Source Code:

import java.util.Scanner;

import java.io.*;

public class ListingFiles {

public static void main(String[] args)

{

(Y/N): ");

exists!");

String path = null;

Scanner read = new Scanner(System.in);

System.out.print("Enter the root directory name: ");

path = read.next() + ":\\";

File f_ref = new File(path);

if (!f_ref.exists()) {

printLine();

System.out.println("Root directory does not exists!");

printLine();

}

 else

{

String ch = "y";

while (ch.equalsIgnoreCase("y"))

 {

printFiles(path);

System.out.print("Do you want to open any sub-directory

ch = read.next().toLowerCase();

if (ch.equalsIgnoreCase("y"))

{

System.out.print("Enter the sub-directory name: ");

path = path + "\\\\" + read.next();

File f_ref_2 = new File(path);

if (!f_ref_2.exists())

{

printLine();

System.out.println("The sub-directory does not

printLine();

int lastIndex = path.lastIndexOf("\\");

path = path.substring(0, lastIndex);

}

}

}

}

System.out.println("***** Program Closed *****");

}

public static void printFiles(String path)

{

 System.out.println("Current Location: " + path);

File f_ref = new File(path);

File[] filesList = f_ref.listFiles();

for (File file : filesList) {

if (file.isFile())

System.out.println("- " + file.getName());

else

}

}

System.out.println("> " + file.getName());

public static void printLine()

{

System.out.println("……………………………………….");

}

}

Output:

Week 14

Write a Java program that implements Quick sort algorithm for sorting a list of names

in ascending Order.

Source Code:

public class QuickSortOnStrings {

String names[];
int length;

public static void main(String[] args) {

QuickSortOnStrings obj = new QuickSortOnStrings();

String stringsList[] = {"raja", "gouthu", "rani", "gouthami", "honey", "heyaansh",

"hello"};

obj.sort(stringsList);

for (String i : stringsList) {

System.out.print(i);

System.out.print(" ");
}
}

void sort(String array[]) {
if (array == null || array.length == 0) {
return;
}

this.names = array; this.length =

array.length; quickSort(0, length -

1);
}

void quickSort(int lowerIndex, int higherIndex) {

int i = lowerIndex;
int j = higherIndex;
String pivot = this.names[lowerIndex + (higherIndex - lowerIndex) / 2];

while (i <= j) {

while (this.names[i].compareToIgnoreCase(pivot) < 0) { i++;

}

while (this.names[j].compareToIgnoreCase(pivot) > 0) { j--;

}

if (i <= j) {

exchangeNames(i, j); i++;
j--;
}
}
if (lowerIndex < j) {

quickSort(lowerIndex, j);

}

if (i < higherIndex) { quickSort(i,

higherIndex);
}

}

void exchangeNames(int i, int j) {

String temp = this.names[i];

this.names[i] = this.names[j];

this.names[j] = temp;
}

}

Output:

Week 15:

Write a Java program that implements Bubble sort algorithm for sorting in

descending order and also shows the number of interchanges occurred for the given set

of integers.

Source Code:

import java.util.Scanner;
public class BubbleSort
{

public static void main(String[] args)

{

Scanner read = new Scanner(System.in);

int size, count = 0;

//Reading size of the list

System.out.print("Enter the list size: ");

size = read.nextInt();

//Creating list with elements
int list[] = new int[size];
System.out.println("Enter any " + size + " integer numbers: ");
for(int i = 0; i < size; i++) list[i] = read.nextInt();

// Bubble sort logic
int temp=0;
for(int i=0;i<size-1;i++) {
for(int j=0;j<size-i-1;j++) {
if(list[j]<list[j+1])

 {

temp=list[j];

 list[j]=list[j+1];

list[j+1]=temp;

count++;

}
}
}

// Displaying sorted list

System.out.println("List of sorted elements: ");

 for(int x:list) {
System.out.print(x + " ");
}
System.out.println("\n Total number of Interchanges is " + count);
}

}

Output:

	MALLA REDDY ENGINEERING COLLEGE
	SUBJECT CODE: C0511
	Department of Computer Science & Information Technology
	INSTITUTION VISION
	INSTITUTION MISSION

	Department of Computer Science & Information Technology (1)
	DEPARTMENT VISION
	To Attain Global Standards in the Teaching, Training, and Research of the IT Industry that Strike a Balance between the Rising Needs of the Sector and the Socio-Economic and Ethical Needs of the Society.
	DEPARTMENT MISSION

	Department of Computer Science & Information Technology (2)
	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)
	PROGRAMME SPECIFIC OUTCOMES (PSOs)

	Department of Computer Science & Information Technology (3)
	Prerequisites: NIL
	 Software Requirements: Java
	REFERENCES:
	Course Outcomes:

	Department of AIML
	www.btechsmartclass.com
	Week 1.
	Solution:

	www.btechsmartclass.com (1)
	Source Code:
	else

	Source Code: Develop an applet in Java that displays a simple message\
	Output:
	else

	Week 4:
	Source Code:
	try
	{

	www.btechsmartclass.com (2)
	Week 5:
	Source Code:
	else {
	try {

	Output:
	Source code:
	return;

	Source Code: (1)
	Else
	{

	Output: (1)
	Output: (2)
	try
	{

	Output: (3)
	Source Code: (2)
	Output: (4)
	Source Code: (3)
	break;

	Output: (5)
	Week – 12
	try {
	try
	{
	try { (1)
	try { (2)

	Output:
	Week – 13
	Source Code:
	else

	Week 14
	Source Code:
	return;

	Source Code: (1)
	Output:

